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Chapter 1

Introduction

1.1 Yahtzee

In September 1999, Tom Verhoeff determined an optimal strategy for the game Yahtzee. This
optimal strategy tries to achieve the highest possible expected total score. Determining such
a strategy for Yahtzee comes down to solving a large recurrent relation. Using the resulting
strategy, the expected score of the player is 254.5896, with a standard deviation of 59.6117.

This thesis builds on the work done by Verhoeff. We will determine a collection of optimal
strategies for Yahtzee. These strategies have a different objective, namely maximizing the
probability of achieving a given score or more. These strategies are harder to compute.

Yahtzee is a game for one or more players, but we only consider the solitaire variant® in
this thesis. If you are not familiar with the game Yahtzee, we recommend that you read the
official rules in appendix A first.

1.2 Research goals

In previous research, Verhoeff determined a Yahtzee strategy that achieves an optimal ex-
pected score.

In this research we aim to determine an alternative optimal strategy, that has an optimal
probability of achieving a given score or more. This problem is significantly harder, as the
size of the state space increases linearly with the score that we are trying to achieve. This
gives rise to much larger computation times. Using a modified version of the the algorithm
structure used by Verhoeff, would require more memory than available.

To solve these problems we develop a caching structure for tabulating a class of recurrent
functions, and implement this technique for the Yahtzee problem.

1.3 Overview of thesis

Chapter two summarizes some of the research done by Verhoeff. Yahtzee is modeled as a
Markov Decision Process.

!"When more than one player is involved, the game basically remains the same. Each player plays his own
solitaire game for a turn, then the next player plays his own game for a turn, and so on, until all players have
ended their game. We only consider the solitaire variant here. For more than one player our results can be
used as well, and we will return to this point in section 6.3.



In chapter three we analyze the main problems of determining the required strategies.

We deal with the development of the software in chapter four, in terms specific for Yahtzee.

Chapter five is the most important chapter of this thesis, and can be read independent
of the other chapters. In it, we focus on the main problem, which the size of the table. We
generalize the Yahtzee problem structure to a class of recurrent functions. We then develop
a caching structure that performs well for evaluation of, or computing tables for, this class of
functions.

Chapter six discusses the results of the computed strategies.

Chapter seven concludes the thesis and suggests areas of further research.

The two appendices deal with the game Yahtzee and the hardware that was used to
compute the strategies.

Readers with limited time are advised to read chapters two and five.



Chapter 2

Previous research

This report builds on research conducted by Verhoeff ([2, 3, 4]). Before this project started,
Verhoeff had already implemented a program that computed an optimal strategy for Yahtzee,
and analyzed the results. In this chapter we will summarize his research and results.

2.1 Markov Decision Processes

To reason about Yahtzee, a formal model is required. Please consult Appendix A for the
official rules of Yahtzee. When we are playing Yahtzee, we keep a score card, and remember
if we are choosing or (re)rolling dice, which dice we kept and which values they have, and
how many times we are still allowed to reroll. These elements determine the game state.

When the game Yahtzee is played, two phases alternate. In a roll phase, dice are thrown.
The player cannot influence the outcome a roll. The player has freedom in a choice state,
where he or she can decide to score the current throw in an open category, or reroll some of
the dice. In the case of rerolling, the choice determines which dice are rerolled, and which are
kept.

Yahtzee can be modeled as a Markov Decision Process ([1, 5]). The key ingredients in a
Markov Decision Process are

e States

e Events leading from one state to the next state, capturing the transition function
e Probability distributions over the events in every state

e Score functions for the events in every state

We define the state space of the game as S = R C, consisting of the roll states R and
choice states C. The initial state of the game is referred to as I. In the initial state, which is
a roll state, no categories have been scored.

For all states s € S we have an event set E.s. In each state, an event from FE.s occurs.
The game ends when all categories have been scored, and at that point we have E.s = ().

An event e € F.s leads to the next state denoted by se, according to the game’s transition
function. For all states s € S, we have an event probability distribution p.s. The player
determines p.s for all s € C, and the dice determine p.s for all s € R. Event e € E.s occurs



with probability p.s.e, and we have

for non-final states (E.s # 0).

We have event scores f.s for all s € S. In particular, event e € E.s scores f.s.e. Note that
f.s.e gives the score increment on account of that event, and not the total score after the
event. The values for f.s.e, the event scores, are given by the rules of Yahtzee. For example,
scoring a roll 1,1,1,4,5 in the category Aces scores three points. Rolling the dice does not
yield any points, and in general we have

fse =0 foralls € R
fse > 0 foralls € C

In each turn, a category must be scored, resulting in exactly 13 turns. This implies that
the transition function for Yahtzee is acyclic. Within a turn, there are at least one roll and
one choice state, and at most three of each. R and C' states alternate.

2.1.1 Lifting events to games

The state transition function can be lifted from single events to sequences of events occurring
one after another. Such a sequence of events is called a game. The resulting state after the
game g, starting in the state s, is denoted by sg.

s() = s
s(eg) = (se)g
Where () is the game with no events (empty sequence), and eg is the game that starts with
event e and continues as g.

Because the transition function is acyclic, there can only exist finite sequences of events
after a state s. We write G.s to denote the set of complete games after s:

Gs={g|Esg=10}

All games start in the initial state I. Thus, the set of all possible games can be written as
G.I.
We define the score F.s.g of a game g after state s inductively by

Fs() = 0
F.seg = f.s.e+ F.se.g

that is, by adding all the scores for the individual events in the game.

In much the same way, we lift the probability distributions p.s for the events. Event e
occurs in state s with probability p.s.e. We define the probability P.s.g that game g occurs
after state s inductively by

Ps() =1
P.s.eg = p.s.e-P.seg



that is, by multiplying the probabilities of the individual events in the game. This works
because the probability distributions are independent (this independence makes the game a
Markov process).

The main observation is that the score increments and event probabilities do not depend
on any previous events in the game.

2.1.2 Decision strategies

We now turn to defining strategies. A decision strategy D defines p.s for all choice states,
s € C. If these choices depend only on the state, and not on chance or other circumstances,
the strategy is deterministic. More formally, D is deterministic if for all s and e € E.s we
have p.s.e € {0,1}.

By &p we denote the expected score for a strategy D. This is obtained as the weighted
average of the scores for all games:

Ep = Y PIg-Flg
g€eG.I

It is also useful to introduce the expected score increment £p.s, also known as conditional
score, after an arbitrary state s:

Ep.s = Z P.s.g-F.s.g
geG.s

We leave out the subscript D when it is clear from the context. The conditional score satisfies
the following recurrence
Es= Z (p.s.e- (f.s.e+ E.se)) (2.1)
ecE.s
Note that £.s =0 if s is a final state (E.s = ().

2.2 The OptEzpected strategy

The goal of Verhoeff’s research was to compute and analyze an optimal strategy for solitaire
Yahtzee.

An optimal strategy was defined as a strategy that has the highest possible expected score.
We call such a strategy OptEzpected for short.

Formally, OptEzpected is defined as a strategy that achieves E:

£ = max(€p) (2.2)

We can specialize the recurrence relation (2.1) for conditional expected scores by distin-
guishing roll and choice states, to obtain a recurrence for the optimum expected score:

5 > eci.s(D-5-€ £ .se) forse R
.8 = e .S N 2.
Es { maxecp.s(f.s.e + E.se) forseC (2:3)

Based on this recurrence it is possible to determine a strategy that achieves the optimum
expected score. A strategy must determine all choices for s € C. A strategy that achieves
an expected score of £ must make choices such that (2.3) holds. To be more specific, if a
strategy sets p.s.é = 1 for an é € E.s for which f.s.e = Es—E.se holds, the expected score
for the strategy will be &.s.



2.3 State space reduction

For the decision process, not all information of a game state is relevant.

As an example, assume we have one scorecard where the Aces category has been scored
for zero points, and the Twos category has been scored for six points. For the decision process
such a card is of equal consequence as a card where six has been scored for the Aces category
and zero for the Twos category. It is relevant which categories have been scored, but we do
not need to know how we achieved the point total in detail.

Based on these observations we can merge equal states of the game tree. In the next
section we reduce the game states for the OptFEzpected strategy.

2.4 Software design

The recurrence relation for OptEzpected can be used to compute the optimum expected value.
To prevent re-evaluation of formulas, a table can be used that stores results of formulas that
have been evaluated already.

A similar reason to construct a table is when we want to construct an Advisor program,
that advises a player on the choices that have to be made for the maximum expected score.

A strategy for Yahtzee can be represented such table. We decide to store only the optimum
expected score for reduced game states between turns. From this information, and advisor
program can reconstruct the decisions for all game states.

A number of elements of the game state are relevant for future decisions. free is the set
of unscored categories, and can be any subset of the thirteen main categories. usneed, an
integer value between 0 and 63, is the score which still has to be scored in the upper section
before the player receives the upper section bonus. To determine how many points an extra
Yahtzee scores, the boolean value chip defines whether the Yahtzee category was scored with
50 points. When the Yahtzee category has not been scored, the value of chip has no function.!

The reduced game states between turns consist of

free x usneed x chip (2.4)

The corresponding table stores the optimum expected score for all reduced game states,
and consists of 3 - 2'® = 786432 entries of real type, taking up 6 MB storage space.

A program that computes this table was constructed. Filling the table on a low-end
computer took about half an hour.

An advisor program that uses this table to advise players on choices, can be found at [4].

!For more details on the state reduction we refer the reader to [2, 3].
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Chapter 3

Problem Analysis

We will store a strategy much in the same way as Verhoeff. A table for the strategy
MaxProb will consist of the maximum probabilities of achieving a score or more, for all
reduced game states. This will allow an advisor program to reconstruct the decisions that
are made in all states.

We examine the structure of MaxzProb. For any gamestate s we have

MazProb((s,0)) =1 (3.1)

In the end state of the game, where no more events are possible, we cannot score any
extra points. We have for sc > 0

MaxProb((endstate, sc)) =0 (3.2)

In the other situations however, we still have to score more than zero points, and we have

MaxProb((s,sc)) = m%x(MaxProb((se, score — f-s.€)) x p.s.e) (3.3)
eckh.s
This relation can be solved with similar methods as the ones used by Verhoeff. The main
difference is the size of the state space. To compute the strategy M ax Probygy, the size of the
state space is 400 times as large as that of the OptEzpected strategy.

3.1 Expectations

The original problem that was solved by Verhoeff, computing a table representing the Opt-
Ezxpected strategy, had taken about half an hour on low-end computer. At that point was not
obvious that determining a MazProb strategy was feasible.

Storing a strategy for an instance MaxzProbg, the strategy with the highest probability of
scoring s or more, requires a table of s-6 MB. The amount of computations required increases
with a factor s.

Suppose we have any amount of internal memory available on a single computer. We could
then adapt the software created by Verhoeff to compute a strategy table for MazProbgyy. The
table would take 4.7 GB internal memory. Computation of the table would take 400 hours,
which is almost 17 days. Unfortunately, both our time and our memory are limited.

We have access to a cluster of 16 computers. These machines are about twice as fast
as the original machine. They have 256 MB internal memory each. The details can be

11



found in appendix B. On these machines the table does not fit into internal memory, and
external memory will have to be used for writing and reading. Access to external memory is
significantly slower than to internal memory. In this case the external memory is a harddisk,
which is approximately F times slower than internal memory.

Determining the constant E is not easy due to interaction between caches, the order of
element retrieval and the physical limits of the data traffic. Theoretically, £ > 6 because of
the data busses, but it is reasonable to assume that E > 20.

As an example we consider determining the single strategy MazProbgyy on the cluster of
16 computers. We expect to require about % = 12.5- E hours, under the false assumptions
that all parallel nodes have no idle time and are used optimally'.

We therefore assumed we would at most be able to determine a carefully chosen group of
MazProb strategies.

At the end of the project, we computed all MazProbg. goo strategies in a single run of 40

hours.

3.2 Requirements

The main requirement is to develop a program that will compute an optimal strategy for
achieving a given score or more.

3.2.1 Parallel strategy generation program

A program is constructed to compute the optimal strategy. This program will be executed
on a parallel computer cluster to reduce computation time.

As its input this program will take a parameter ’ScoreToBeat’, the score that the strategy
needs to achieve. Upon completion, the program will output the strategy. A strategy will be
defined by a large file of approximately ScoreToBeat-6 MB. This number corresponds to the
strategy tables used by Verhoeff.

3.2.2 Specification

Given a set of rules for the Yahtzee game, a gamestate s and a score sc, the equation for
which we are constructing a table is:

MaxprObScoreToBeat((sa SC))

This function determines the maximum probability of scoring sc points or more from a
game state gs onwards. For a game starting in the initial state we can then compute the
maximum probability of achieving a certain score or more. To formalize this, we extend the
GameState with a ScoreToBeat component to BeatScoreState.

BeatScoreState = GameState x Score (3.4)
we then reformulate our problem as finding the value of

MazProbscoreroBeat((I, ScoreToBeat))

"We also assume that the external retrieval of values, in order to compute an element, is significantly
slower than the time it takes to compute the element from internal memory. This assumption holds because
computing an element of T requires inspecting about 5000 other elements of T'.

12



We are also interested in the strategy that achieves such a maximum probability. With
some extra computation we are able to derive the strategy from the values of MazProb. To
this end, we would like to store all the values of MazProb in a table.

Along the lines of the research by Verhoeff, after we have generated this table, we can use
it to compare strategies, and possibly to construct an ’advisor’ program.

The main problem of the implementation is fast storage space: the size of the BeatScoreState
space is too large to fit all the desired data in fast storage at once.

3.2.3 Size requirements

The size of the GameState space is 3 x 2'8. The BeatScoreState space has ScoreToBeat x 3 x
2!8 elements, and if the probabilities are stored as 8-byte reals, we require ScoreToBeat x 6
MB of storage space. For ScoreToBeat = 800 we would require approximately 4.7 GB.
When accessing the table from external memory instead of internal memory, computation
time is severely increased.
In the next chapter we will develop a caching method for Yahtzee that allows us to
minimize cache misses, and that at the same time allows us to parallelize the computation.

13



Chapter 4

Software

The software that is required to for this thesis, can be analyzed on a number of levels. The
main issues will be meeting memory and parallelization requirements.

The next two chapters can be read in any order. Chapter 4 addresses the specific problems
of this assignment, where we are constructing a strategy for the game Yahtzee.

Chapter 5 solves the main problems on a more abstract level. There is no mentioning of
Yahtzee, or the exact function to be computed.

Readers with limited time can decide which chapter to read. Those who are more in-
terested in the implementation of the caching structure for this particular problem are rec-
ommended to read chapter 4. Readers who are interested in the formal construction and
application area of the caching method are advised to read chapter 5.

4.1 Jobs

We propose to partition the table into a number of segments. We will try to choose the
segments, which we will call jobs, in a way that allows us to reduce external memory access
as much as possible.

By “computing a job(i)” we mean computing the values of MaxzProb(gs) for all gs €
job(z). We aim to find a partitioning that allows us to do some preparational work, compute
all values of MazProb in the job using only internal memory, and write the results to external
memory.

Assuming such a partitioning exists, we can construct a skeleton program. This program

7

is shown in figure 4.1.
For our purposes we have a number of requirements to the job definition:

Requirement A There must be at least one job we can compute without depending on any
other job.

Requirement B We can construct a fast algorithm that can determine which (completed)
jobs are required to compute all values in a given job. (Dependency)

Requirement C We can implement fast mapping and unmapping functions for the jobs
data to the game state space: a large overhead on retrieving or writing data for a job
in memory is unacceptable.

14



program FillMaxProbTable;
begin
while (’there are uncomputed jobs’) do
begin
Select an i s.t. Job(i) can be computed now
; Determine on which Jobs Job(7) depends
; Load these jobs into memory
; for e := all in Job(i) do
begin
compute MazProb(e) using values in memory
; store MazProb(e) in memory
end
; Write the job from memory
end
; combine Job data into desired MaxProb table format
end.

Figure 4.1: Yahtzee skeleton program using jobs

Requirement D Every job, combined with the jobs it directly depends on and the algo-
rithm, must meet our fast-access requirements. (E.g. can fit in the available internal
memory) This allows us to compute the values of the output job in a batch without
accessing external memory.

Requirement E Once all jobs have been computed, we are able to construct the table for
MazProb from the data of the combined jobs (in a relatively short time).

If we want to compute jobs in parallel, we have one extra requirement:

Requirement F Parallelism: We want to be able to distribute the jobs over m processors,
while keeping idle time at a minimum. To achieve this, the job definition should at least
allow us to start more than one jobs at the same time (i.e. non-linearity).

For the Yahtzee MaxProb problem it is not immediately obvious if there exists a job defi-
nition with sufficient job sizes that meets the criteria. We initially look for the job definition
that has the largest possible job sizes, to reduce overhead. Larger job sizes possibly conflict
with requirement (F), and we suspect at this point that a trade-off will have to be made.

4.1.1 Observations

Single entry jobs

Note that if we define a job defined as a single entry from the table, we meet the above
criteria. That is not a desired solution, as there is no caching involved. The computation
time of single entry jobs is comparable to using external memory only, which we considered
too slow.

15



Layer jobs

The GameState space has one natural ordering that results from the Yahtzee rules: A turn
ends when a category is scored. For every game, we have thirteen such turns, one for each
category. When we start a the first turn, no category is scored. At the start of the Nth turn,
N — 1 categories have been scored. We call a partition based on turns a layer partition.

We define fourteen layer jobs, with

job(i) = { ((free, chip, usneed), score) | 13 — i = |free| } (4.1)

A layer corresponds to the state of the game between turns. job(0) corresponds to the
start of the game, where no categories have been scored. job(13) corresponds to a completed
game, where all categories have been scored.

We know that the values in job(i) are only dependent on job(i + 1), and that job(13) is
not dependent on any other job. Unfortunately, computations show that the middle layers
do not meet the memory requirement (D).

For the size of a job(l) where ScoreToBeat = 300, we have

1 1
( 13) X g x 300 x ScoreToBeat = ( l3) x 28800

The skeleton program caches the job it is computing, as well as the jobs the computation
depends on. For a layer partitioning this means that to compute job(i) the cache must be
able to contain job(i) and job(i + 1) at them same time. We compute the amount of internal

memory required, in bytes:
1 1
5 + 3 x 28800 x 8
[ I+1

We find the maximum for this function for [ = 6, where the memory requirement is
approximately 750 MB. This is too large for our purposes.

A second problemn is that the layer job definition does not meet requirement (F), because
a job(i) can only be started after computation of job(: + 1), which implies that jobs are run
one after another.

4.1.2 Job proposal

We propose to refine the layer job definition. To control the coarseness of the resulting
definition, we introduce a parameter FizedCatSet. We decide to split CategorySet into two
disjoint sets called FixedCatSet and VarCatSet. The idea is to refine the layer job definition
by splitting a layer into several parts according to FizedCatSet.

FizxedCatSet tells us which categories are used to determine to which job a state in the
layer belongs. We only have to look at the layer (derived from the number of scored categories)
and the scored categories to find out to which job a BeatScoreState belongs.

For example, if FizedCatSet = { Aces}, a layer job is split into two jobs. One job
contains the states in the layer for which Aces have been scored, and one job the other states
of the layer.

16



Definition

We formally define the jobs for any layer € [0..13] and any fized € P(FizedCatSet) by

job(layer, fized) = {((fized Uw, chip, usneed), sc)
| v € P(VarCatSet) A 13 — layer = |fized Uv|}

For all the states belonging to a job(layer, fized), the scorecard will look the same for all
categories in FizedCatSet.

Properties

Using this job definition, we are able to derive some properties.
If we include more categories in FizedCatSet, we get smaller jobs.
For job dependency, we find that job(layer, fized) depends on

{job(layer + 1, fized)} U {job(layer + 1, fized \ {c}) | ¢ € fized}

The left half of the conjunct expresses that a category is scored which is an element of
VarCatSet. For those states, fized remains the same.

The right half expresses that a category was scored which is not an element of VarCatSet,
so it must be an element of FizxedCatSet. As an added constraint we have that this category
must not have been scored already.

Splitting a layer partitioning allows for parallel computation, as the parts within a layer
are independent of eachother.

Recall that fitting a job computation into memory was our main problem. As we have
differing job sizes, and still have to decide FizedCatSet, we first need to calculate how our
choice affects memory requirements. We will investigate this in the generalization of the next
chapter.

4.1.3 Implementation

We implemented this technique and generated a 4.7 GB table, from which the MazProbg.. s00
strategies can be derived. We used the partitioning technique to reduce internal memory
requirements, and also to allow parallel computation.

In this thesis we will not consider implementation details for the constructed program. We
can indicate however, that it is possible to implement fast mapping algorithms for reading from
and writing to the cache. The intermediate data that was generated by job computations
was stored in such a way that element retrieval was possible, and there was no need for
conversion of this format to another table. An advisor program can access the table using
minor modifications to existing functions.

4.2 Generalization

In the next chapter we will generalize the techniques that were introduced here, and we
will give conditions under which this type of partitioning can be applied. The more general
approach will allow us to derive some properties such as required cache sizes.
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Yahtzee has 13 categories, and this set will be generalized to A, with |A| = 13, in the
next chapter. The FizedCatSet will return in a more general form as the set G. The other

components of the state space: chip, usneed and ScoreToBeat will be combined into the set
B.
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Chapter 5

Evaluating certain recurrent
functions on a large domain

In the previous chapter, we developed a program for a specific problem. The technique that
was used, however, is more generally applicable.

In this chapter, we design a parameterized program structure that computes a table for
a recurrent function. The function MazProb is an example of such a function. The functions
we consider have a specific dependence pattern. The program parameter controls a trade-off
between speed and the amount of internal memory required.

5.1 Introduction

We would like to design a program to construct a table T" for a function f. That is, for every z
in the domain of f, the table T stores f(z). If T is too large to fit into internal memory, we
will have to resort to external memory for storage. External memory typically is significantly
slower than internal memory.

For a recurrent function f, the value of f(z) depends on other values f(y). Instead of
evaluating all those f(y), we would like the program to read these values from 7', as well as
write f(z) to T. Because T is stored in external memory, this requires additional access to
external memory. A technique for reducing such access is caching. In this case, the program
can use internal memory as a cache.

Caching mechanisms are based on assumptions about typical memory access patterns.
We can create a more efficient cache, if we know more about the access pattern of a function.
For a recurrent function, this pattern is governed by the dependencies between the values of
f and the order in which we construct 7.

We use the dependence relation to design a parameterized program structure for a specific
class of recurrent functions. We define this class in section 5.2. The program uses buffers
to cache parts of T, and the parameter controls the size of the buffers. Larger buffers result
in fewer accesses to external memory, leading to faster execution. The parameter effectively
controls the trade-off between speed and required internal memory size.
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5.2 A class of recurrent functions

We only consider a specific kind of recurrent functions. These functions have a general
dependence structure in common. In this section, we define this class of functions. We write
a — b to denote that the computation of f(a) depends on the value f(b).

As an example in this class, consider a function & on the domain P({1,2,3}), that is, on
the eight subsets of {1,2,3}, with dependence relation depicted in figure (5.1). Thus, the
computation of h(s) depends on the values of h(t), where ¢ is of the form s\ {a} for all a € s.
This dependence relation is also known as a cube.

{123}
‘ {12 ’ {13} ‘ {23} ’

o) (o) ()
\/

}

Figure 5.1: Dependence graph for a function on P{1,2,3}

We generalize this structure in three ways. First, we allow arbitrary powersets P(A).
Second, we allow an extra argument in some set B. Third, we allow the dependency to be a
subrelation of the A-dimensional hypercube.

The generalized class consists of functions on a domain of the form P(A) x B, for which
the dependence relation satisfies

(s,0) > (s',0) = §=sv(@a:aes:s =s\{a}) (5.1)

That is, f(s,b) may only depend on f(s,b') and f(s\{a},?’) for some &’ and a € s. Obviously,
we also require that the dependence has no cycles.

The domain B could have some further structure by itself, or it could be absent. In the
latter case, we take for B the singleton set {-}.

From now on we assume that the function f is a member of this class of functions.

5.3 Partitioning the table

We propose a program that constructs the table T in a number of steps. In a step, the
program constructs a part of T. For each of these steps, we ensure that the part of T" we
are constructing, as well as the parts on which it depends directly, fit together into internal
memory.

We define a partitioning of T' by means of an equivalence relation. An equivalence relation
~ on the domain of T' groups elements into equivalence classes. An element (s,b) of T is in
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the same part as (s',b') iff they belong to the same equivalence class. For an equivalence
relation ~, we define the class K. (s,b) containing (s,b) by

(s',b') € K. (s,b) < (s,b) ~ (s',0) (5.2)

5.3.1 Example

Suppose we have a partitioning of T according to
(s,0) ~ (s, b)) < [s] = 5|

where |s| denotes the cardinality of s.

When we use this equivalence relation to partition T' for the domain P({1,2,3}) x {-},
the elements are grouped as in figure (5.2). The example has 4 equivalence classes. There is
a class for each possible cardinality of the elements of P({1,2,3}).

5.3.2 Equivalence class dependencies

To determine in which order the program should compute parts of T, we investigate how the
dependence relation of f relates to the partitioning of 7. For an equivalence relation ~ and
a dependence relation — on the domain of f, we denote the induced class dependence also
by —. It is defined as the least solution of

(s,b) = (s,0) = K (s,b) = K.(s',1) (5.3)

That is, equivalence class K depends on K’ iff K contains an element that depends on an
element of K.
For the example from the previous section, the class dependence relation is depicted in

figure (5.2).
{123}
{(131{12 {23
{3.{2 {3}

B

Figure 5.2: Dependence graph for the ‘cardinality’ equivalence on P({1,2,3})

Not all equivalence relations give rise to suitable class dependencies. In particular, if
we want to compute the parts in a specific order, we must avoid cyclic class dependencies.
Self loops on classes are not problematic. But if the class dependence relation is such that
Ki; — Ky and K9 — K, then we cannot compute the parts in sequence.

21



5.3.3 A parameterized equivalence relation

If we use the ‘cardinality’ equivalence relation to partition the table, then we get a linear
dependence graph. However, for some purposes this partitioning might be to coarse. Such
was the case for optimal beating of high scores in Yahtzee.
We want to refine the ‘cardinality’ partitioning in a tunable way. For this, we introduce
a parameter G that controls the coarseness of the partitioning. For G C A we define a new
equivalence relation ~¢ that subdivides each ‘cardinality’ class based on the intersection with
the set G:
(8,0) ~g (8,0) & |s|=|s| AN sNG=sNG (5.4)

For G = (), this relation reduces to the ‘cardinality’ equivalence. This results in |A| + 1
equivalence classes. At the other end of the spectrum, for G = A, all elements of the powerset
of A correspond to an equivalence class, resulting in 24/ equivalence classes.

For all elements of a class K. (s,b), the intersection of s and G is the same, but sN(A4\G)
may differ. Because both these components, G and A \ G, return frequently in our formulas,
we define G by

G=A\G (5.5)

Note that in the following analysis, only the cardinality of G is a concern. Exactly which
elements of A are in G is not important here. For larger cardinalities of G we have more, but
smaller, equivalence classes. In general, we find that ~¢ produces 2!¢!. (|G| 4 1) equivalence
classes.

Note that, in equivalence class K. (s, b), all elements have |s| and s NG in common. The
freedom is in choosing the |s| — |G| = |s N G| elements of s from G, and the element of B.
Thus, for the number of elements in the equivalence class K. (s,b), we find:

Keolol] = () <18 (5:6)

5.3.4 Analyzing the class dependence for ~¢

The partitioning based on ~¢ yields smaller parts, while preserving the dependence structure
as much as possible. Recall that an element (s,b) in formula (5.1) depends on either an
element with equal s component, or on an element with s\ {a} for some a € s. We discern
two cases for s\ {a}. We have either a € sN G, or we have a € sN G.

For a € sN G, computation of f(s,b) depends on a value from an equivalence class with
lower cardinality. For each possible a € s N G this concerns a different equivalence class.

For a € s NG, the computation of f(s,b) depends on a value from one specific class. All
elements (s \ {a},b') belong to the same class, because a is an element of G.

More formally, we have the following dependencies between equivalence classes:

K., (s,b) — K.,(s,b)
Koo (s,0) — Koo(s\{g}V) forallge sNG (5.7)
K.,(s,b) — K.,(s\{g},?) for any oneg € sNG

An example of this class dependence for A = {1,2,3} and G = {1} can be found in figure
(5.3). Self loops have been omitted.
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Figure 5.3: Dependency graph example for A = {1,2,3} and G = {1}.

5.4 Program design

The program we propose constructs the table 7' in parts, based on the equivalence relation
~@q, and we take G to be a parameter of the program. The values of f for one equivalence
class are computed, before proceeding to another equivalence class.

From formula (5.7) we find that an equivalence class depends on a number of other classes,
but that they are either the class we are computing, or classes for a lower s-cardinality. If we
use the s-cardinality of a class to determine the order of class construction, then we can be
sure that classes are available when needed.

The program constructs all equivalence classes in an order that preserves increasing s-
cardinality. To construct a class, we must access values from classes it depends on.

5.4.1 Caching

We now introduce a program design and describe a caching mechanism. Also see figure (5.4).

To construct T for a class K, the program will preload all classes on which K depends
from external memory into a cache.

The program then computes all values of T for K and writes them to the cache. All values
on which these computations depend are now available in the cache. After the part of the
table corresponding to K is completed, it is written from cache to external memory, and the
caches are invalidated. This is repeated until 7" is constructed for all equivalence classes.

Depending on |G| and the order in which we construct the classes, it is possible that the
next class to be computed depends on classes that were in the cache already. In such a case
we invalidate the cache only for classes that are no longer required.

5.4.2 Parameter choice

In general, a lower cardinality |G| yields larger classes, which leads to fewer external accesses.
However, this requires a larger cache.

The requirements for the cache are the following. For all equivalence classes, the class
itself, as well the classes on which it depends, must together fit into the cache. Based on
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program Compute Table;
begin
for ¢ := 0 to | Al do
begin
for each K(s,b) where |s| = C do
begin
{ Read classes on which K(s,b) depends from external memory }
ReadInputCaches;
for each z in K(s,b) do
begin
{ Use the caches to read and write values }
Tlz]l := f(x)
end;
{ Write class K(s,b) to external memory }
Write QutputCache;
InvalidateCaches
end
end.

Figure 5.4: Generic skeleton program

formulas (5.7) and (5.6), we find that the maximum number of elements in the cache at one

time equals
G| G|
(“G‘ o (\_G| div 2) ! <(|_G| —1) div 2)) B 9

Note that for fixed n, the binomial coefficient (Z) is maximized by k = n div 2.

We can calculate the cache size requirements, if we know |A|, |B|, |G|, and the space
required to store a function value of f. Figure (5.5) shows required cache sizes as a fraction
of the size of T', for the extreme cases |G| = 0 and |G| = |A].

Formula (5.8) tells us when the suggested program structure can be of use. It implies
bounds for the algorithm, and how controlling the cardinality of G can influence the required
cache size.

Reducing the size of the cache comes at a cost. If we reduce the size of the cache by
choosing a larger |G|, more parts have to be preloaded. Some parts will be preloaded multiple
times

We calculate the amount of preloaded data by taking the number of times a class is
preloaded, and multiplying with the size of the class, for all classes. The number of times a
class is preloaded is defined by the dependence relations between the classes, resulting in

IGl—|snG|  iff|snG| =[G

G|~ |sNG|+1 iff|snG|+[C] (5.9)

Multiplying this with the class size and taking the sum over all classes, we find that the
total number of elements that is preloaded is

(|G| +2) - 241 —2¢ly . |B| (5.10)
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Figure 5.5: Cache size bounds. Indicated as a fraction of the size of T'.

If we divide the total amount of preloaded data by the size of the table T, we get the
average number of external read actions per element of T'. In cache terminology, each external
read corresponds to a cache miss'. The average number of cache misses (external reads) per
element of T is given by
Gl _ 1

1 _ 5.11
T2 T og (5-11)

The bounds for the average cache misses can be seen in figure (5.6).

An efficient cache reduces cache misses as much as possible, so we will choose the cardi-
nality of the parameter G as small as possible. However, decreasing |G| results in larger cache
sizes. In practice the available cache memory sets a lower bound on |G]|.

Note that the number of cache misses is not dependent on the specific dependence relation
of the function.

5.4.3 Yahtzee application

This technique was used for a real problem, where we wanted to determine an optimal strategy
for playing the game Yahtzee. The goal of this strategy is to maximize the probability of
scoring more than S. This score S is a parameter of the problem. The solution is based on
a recurrent function that, for each game state and remaining score to achieve S’ (S’ < §),
yields the probability to score more than S’ in the moves after that game state.

We use a table to store information about the strategy. The table T represents the
probabilities of achieving S or more, for all possible states of the game between turns. This

!Because data is preloaded, there are no actual cache misses during execution. In a conventional cache
there is no preloading. It is possible to rewrite the skeleton program using a conventional cache.
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Figure 5.6: Cache efficiency bounds. Average number of cache misses per element of T'.

table can be used to create an advisor program, which can help players to decide what to do
in each possible state of the game.

As an example, we explain how to choose the parameter |G| for constructing the table,
in case of a strategy that scores more than 400 with maximum probability. To compute this
table, the parameters are |A| = 13, and | B| = 2-64-400 = 51200. Storage of an element of the
table T, of type real, requires 8 bytes. The size of the complete table is 24! . |B|-8 = 3.2 GB.
On the production machine, 256 MB internal memory is available.

In figure (5.7), a horizontal line is drawn at 256 MB. For |G| = 5, a cache of 186 MB is
required. The corresponding equivalence relation splits the table 7" into 25 - (13 —5+1) = 288
equivalence classes.

This is an optimal choice for this particular problem. Lower values of |G| result in cache
sizes that are too large for the given problem, and higher values of |G| cause more cache
misses (external reads).

5.5 Conclusions

If we want to evaluate or construct a table for a recurrent function f, as defined in section 5.2,
it is possible to create an efficient caching algorithm.

A partitioning of the domain of f is used as a basis for a caching structure. The caching
algorithm reduces external read actions, or cache misses, independent of the details of f. A
parameter controls the trade-off between the amount of cache misses, and the size of the
cache.

Formula (5.8) can be used to determine the size requirements of the cache for a given f.
A smaller cache increases the amount of cache misses. The amount of cache misses can be
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Figure 5.7: Yahtzee case study: required cache sizes

found using formula (5.11).
In practical settings, the available maximum cache sizes are often known. Our findings
can also be used to choose a suitable parameter G if an upper limit for the cache size is given.
We have used this partitioning technique to compute the tables for the Yahtzee MazProbg.. 00

strategies. For the implementation we used the partitioning to parallellize the computation
of the table.
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Figure 5.8: Yahtzee case study: average number of cache misses
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Chapter 6

Results

At the end of the project, all MazProb, strategies for s < 800 where determined in a single
run of 40 hours on the parallel cluster.

6.1 Probabilities

In table 6.1 and figure (6.1) we find the main results of the MazProb strategies. For score s,
0 < s <800 we have determined the strategy that has the highest probability of achieving s
or more. The probability P(score > s) is shown for each strategy MazProb;.

1.1 T

IOptimum prt;bability of belating the scolre

1

0.9

0.8

0.6 \
\
0.4 \
0.3 \\
\

0.1

Probability

0 100 200 300 400 500 600 700 800
Score

Figure 6.1: Optimum probabilities for MazProbg.._goo

During his research, Verhoeff simulated playing five million games of Yahtzee using the
OptEzxpected strategy. The resulting scores were stored. We used this data to approximate
P(score > s) for the OptEzpected strategy. These values can be found in figures 6.2 and 6.3,
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Score to | P(score > s) | P(score > s) based on
beat: s | for MazProbs | OptExpected simulations
0 100.000000 100.000000
50 100.000000 100.000000
100 99.999975 99.998800
150 99.793817 99.131700
200 91.080460 86.358500
250 54.188692 48.370300
300 17.603092 14.310200
350 9.759235 7.238200
400 4.932696 3.836780
450 1.754318 1.138200
500 0.997806 0.721620
550 0.215689 0.118140
600 0.141191 0.090720
650 0.019010 0.008800
700 0.014113 0.007380
750 0.001303 0.000000
800 0.001009 0.000000

Table 6.1: The probabilities of achieving some scores s using MaxProbs and OptFEzxpected

and can be compared to the corresponding MazProb, strategy.

The absolute differences between the simulations of OptEzpected and the MaxzProb strate-
gies can be found in figure 6.4. We find that the MazProb strategies perform better for beating
any given score.

As the probabilities decrease rapidly for higher scores, a relative difference graph as in
figure 6.5 may be more useful. This graph shows the probability differences between the
simulations of OptEzpected and the probability of MaxzProbg. oo, divided by the probability
of the simulations for each score. This indicates how much better MaxProbg._ ggo strategies
perform, relative to OptEzpected results.

The MaxProb strategies for high scores will attempt to score a Yahtzee every turn. After
the first roll, the OptEzpected strategy will reroll in a way that maximizes the expected score,
possibly missing the chance of rolling a Yahtzee. A MaxProb strategy therefore has a higher
probability of scoring Yahtzees.

In figure 6.5 we can see these characteristics: For a game where a Yahtzee is thrown every
turn, we score 50 points in the first turn, and 100 points in every turn after that. The graph
shows that MazProb performs better in general, but is also significantly better in scoring
Yahtzees. This difference becomes increasingly clear for score > 400.

6.2 Comparing strategies

For this thesis we only compared strategies based on their expected results, and not on the
way they progress through a game.
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Figure 6.2: MaxzProby.. goo and OptEzpected

6.2.1 OptExpected

In general, OptExpected is the best solitaire strategy, because the aim of the game is to achieve
the highest possible score. When it comes to achieving the highest probability of achieving
a score s or more, the MazProbg.. gy strategies are always at least as good as OptExpected.
Moreover, MaxzProbg.. goo strategies are significantly better at achieving very high scores.

6.2.2 MaxProbApprox

During the writing of this thesis, Verhoeff designed an approximation strategy, that aims
for the maximum probability of achieving a score s or more. This approximation technique
assumes that the the probabilities for scoring are normally distributed for all gamestates.
The OptEzxpected scores and variances were known for all gamestates, and this was used to
construct a MazProb approximation strategy.

It turns out that this approximation does not perform well at all. This was expected, as
the probabilities are not normally distributed. To achieve a score s or more, it is even better
to use OptEzpected than to use MazProbApprox.

6.3 Extending for multi player games

Although the OptEzpected and MazProb strategies are intended for solitaire games, they could
be used in multi player games.

When we use OptEzpected to play, we play the solitaire game as usual. Our strategy does
not change, whatever an opponent does, because we have no options.
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Figure 6.3: MaxzProby.. s00 and OptEzpected (logarithmic scale)

Common sense suggests that if an opponent is lucky in his first few turns, we might
consider taking more risks. We know how high our expected score is, and if that is not good
enough, a different strategy might be better.

Conversely, if an opponent is very unlucky in the first few turns, we might prefer a strategy
that takes less risks. We would like to play it safe.

The MazProb family of strategies can be used for such changes in our game strategy. If
we can estimate the expected scores of our opponents, we can use a MazProb strategy to
maximize the probability of beating our best opponent. This gives us a better chance of
winning than just playing for the highest expected score.!

!Estimating the expected score of opponents assumes that we have knowledge of their strategies. We could
assume that good players play according to OptEzpected.
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Chapter 7

Conclusions and suggestions for
further research

7.1 Conclusions

The writing of this thesis has resulted in two kinds of results. On one hand we have computed
the MaxzProby.. g00 strategies, and compared them to the OptFExpected strategy.

On the other hand, to be able to compute these strategies, we developed a caching algo-
rithm for a class of recurrent functions. This is a result that has scope beyond the Yahtzee
problem, and raises some further research questions.

7.2 Further research concerning Yahtzee

7.2.1 MaxProb advisor program

Using the generated table, it is possible to write an advisor program for the MaxProby._. goo
strategies, just as there is one now for OptEzpected.

7.2.2 Expected scores for MaxProb

There is still a lot of analysis for Yahtzee to be done, for example concerning the MazProb
strategies. It would be of interest to determine the expected scores for these strategies, and
to compare them to the results of the OptEzpected strategy.

Using the software and data that is available now, it should not be difficult to compute
the expected scores for the MaxzProb strategies.

7.2.3 Comparing strategies

Comparing two strategies can be based on some special features, such as the expected score,
but also on the structure of the strategy graph. Comparison requires criteria that define when
two graphs are more or less alike. As a result, analysis of these graphs can only be conducted
if there are clear criteria for strategy graph likeness. For any nontrivial definition of likeness,
we expect comparison will require a considerable amount of computation?.

YIf likeness is defined recurrently, it is likely that the structure of the corresponding function will allow for
the use of fixed subset partitioning.
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7.3 Further research concerning fixed subset partitioning

The technique used to partition a domain for this class of recurrent functions leaves a number
of questions for further research.

7.3.1 Applications

The partitioning technique might be of use in a number of areas. We could actively investigate
which other problems have this kind of dependence structures, and apply this technique.

7.3.2 Generic function library

The Pascal programs that were created here, implements fixed subset partitioning for Yahtzee.
The names that we used for constants, variables and procedures consistently refer to such
things as Yahtzee categories.

Based on chapter 5 it should be possible to write a generic set of functions that implements
this type of partitioning.

7.3.3 Load balancing

When partitioning is used to create a large number of classes, it is possible to generate a table
using parallel computation. The class dependencies are well suited for this end. The only
problem is caused by the varying sizes of the classes, making it more difficult to balance the
load of the parallel nodes.

A possible solution to this problem lies in the formula for the class sizes. We saw that at
most 2/Gl classes could be computed in parallel. If we have less than 2!¢ nodes, we try to
distribute the classes such that each node has an equal amount of work to do. We believe
this can be analytically solved on the basis of the class size formula, because of the properties
of the binomium.
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Appendix A

The game Yahtzee

Yahtzee is a registered trademark of the Milton Bradly Company.

Official rules for solitaire Yahtzee

The game Yahtzee comes is played with five dice and a score card.

Objective

The player rolls dice for scoring combinations, and tries to earn the highest total score.

Game summary

A game consists of 13 turns. In each turn, the player rolls the dice up to 3 times to get the
highest scoring combination for one of the 13 categories.

After the player has finished rolling, a score or zero must be placed in one of the 13
category boxes on the score card.

The game ends when all category boxes have been filled in. All scores are totalled,
including any bonus points.

Taking a turn

In a turn, the player may roll the dice up to 3 times, and may decide to stop and score after
the first or second roll. After the first or second roll, the player may decide to “keep” any of
the dice, rerolling only the other dice.

Scoring

When the player has finished rolling, he or she decides which box to fill in on the score card.
If the player can’t or doesn’t want to enter a score, a zero is entered. Each box can be filled
in only once.

The score card can be found in table A.1 and is divided into an upper and lower section.
Scoring combinations can be found in table A.2.
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Category ‘ Score ‘

Upper

section

Aces*
Twos*
Threes*
Fours*
Fives*
Sixes*

Upper section bonus

Lower | Full House*

section | Small Straight*
Large Straight*
Yahtzee*
Chance*

Three of a Kind*
Four of a Kind*

Extra Yahtzee Bonus

Grand Total ‘ ‘

*: Primary categories.

Table A.1: Yahtzee score card

‘ Category ‘ Condition ‘ Score
Aces - sum 1s
Twos - sum 2s
Threes — sum 3s
Fours - sum 4s
Fives - sum 5s
Sixes - sum 6s
Upper section bonus | Upper section total > 63 35 once

Three of a Kind
Four of a Kind
Full House

> 3 equals
> 4 equals
2 + 3 equals*

sum values
sum values

25

Small Straight > 4 in sequence™® 30

Large Straight 5 in sequence* 40

Yahtzee 5 equals 50

Chance - sum values
Extra Yahtzee bonus | 5 equals and 50 at Yahtzee | 100 each
Grand Total ‘ sum above ‘

*. 5 ys act here as joker, provided that the categories

ys and Yahtzee have been scored already.

Table A.2: Yahtzee scoring rules
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Appendix B

Beowulf cluster

In general, a Beowulf cluster is a kind of high-performance massively parallel computer built
primarily out of commodity hardware components, running a free-software operating system
like Linux or FreeBSD, interconnected by a private high-speed network. It consists of a cluster
of PCs or workstations dedicated to running high-performance computing tasks. The nodes
in the cluster don’t sit on people’s desks; they are dedicated to running cluster jobs. It is
usually connected to the outside world through only a single node.

pacluster.win.tue.nl is a Beowulf-class Linux cluster, located at the Mathematics and
Computing Science faculty of the Eindhoven University of Technology. It is used for research
and education in parallel programming. It currently consists of 17 PC’s connected through a
100 Mb/s fully switched ethernet network.

One of these machines, called the master or host machine, is connected to the Internet.
The other 16 machines are the cluster nodes. All these machines are identical:

e Pentium IIT 533 MHz, EB version:

— 133 MHz FSB
— full speed on-die 256 kB cache

e 256 MB RAM
e 10 GB harddisk

The switch is a Cisco Catalyst 3524 XL, 100 Mbit 24-ports switch.
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