Reward Variance in Markov Chains

Tom Verhoeff
Technische Universiteit Eindhoven
Faculty of Math. \& Computing Science Software Construction

T.Verhoeff@TUE.NL
http://www.win.tue.nl/~wstomv/

A spider walks randomly on the faces of a cube:

What is the expected time for the spider to get off the cube? What is the corresponding variance?
© 2004, Tom Verhoeff
Reward Variance-2

Expected Reward

Transition probabilities p.s.t and rewards r.s.t for states $s, t \in \Omega$
Lift to walks $w=s_{0} s_{1} \ldots s_{n}$

Probability of walk $w: ~ P . w=p \cdot s_{0} \cdot s_{1} * \cdots * p \cdot s_{n-1} \cdot s_{n}$

Reward of walk $w: R . w=r \cdot s_{0} \cdot s_{1}+\cdots+r \cdot s_{n-1} \cdot s_{n}$

Walks from s to absorption in $A: W . s=\biguplus_{t \in \Omega}\{s t v \mid t v \in W . t\} \quad(s \notin A)$

Expected reward from s to absorption in A :

$$
\mathcal{E}_{W \cdot s}[R]=\sum_{w \in W \cdot s} P \cdot w * R \cdot w
$$

Finite state machine with transition probabilities and rewards

Expected Walk Length for Spider

Obtain equations by generalizing and conditioning .

Expected walk lengths $\mu_{s}=\mathcal{E}_{W . s}[R]$ from face s to bottom:

$$
\begin{aligned}
\mu_{\top} & =1+\mu_{\mathrm{M}} \\
\mu_{\mathrm{M}} & =0.25\left(1+\mu_{\top}\right)+0.5\left(1+\mu_{\mathrm{M}}\right)+0.25\left(1+\mu_{\mathrm{B}}\right) \\
\mu_{\mathrm{B}} & =0
\end{aligned}
$$

Solution:

$$
\begin{array}{r}
\mu_{\top}=6 \\
\mu_{M}=5 \\
\mu_{\mathrm{B}}=0
\end{array}
$$

For $s \notin A$:

$\mathcal{E}_{W . s}[X$

$=\quad\{$ definition of $\mathcal{E}\}$ $\sum_{w \in W . s} P . w * X . w$
$=\quad\{$ write $w=s v$ for $v \in W . t$, because $s \notin A\}$
$\sum_{t \in \Omega} \sum_{v \in W . t} P . s v * X . s v$
$=\quad\{$ recurrence for walk probability: P.sv $=$ p.s.t $* P . v$ for $v \in$ W.t $\}$ $\sum_{t \in \Omega} \sum_{v \in W . t}$ p.s.t *P.v * X.sv
$=\left\{\right.$ distribute p.s.t* outside \sum_{v} (p.s.t does not depend on v) \} $\sum_{t \in \Omega}$ p.s.t $* \sum_{v \in W . t} P . v * X . s v$
$=\{$ definition of $\mathcal{E}\}$
$\mathcal{E}_{t \in \Omega}\left[\mathcal{E}_{v \in W . t}[\right.$
(C) 2004, Tom Verhoeff

Reward Variance-6

Variance

Definition:

$$
\mathcal{V}[X]=\mathcal{E}\left[(X-\mathcal{E}[X])^{2}\right]
$$

Often computed via second moment:

$$
\begin{aligned}
\mathcal{V}[X] & =\mathcal{E}\left[(X-\mathcal{E}[X])^{2}\right] \\
& =\mathcal{E}\left[X^{2}-2 X \mathcal{E}[X]+\mathcal{E}^{2}[X]\right] \\
& =\mathcal{E}\left[X^{2}\right]-2 \mathcal{E}[X] \mathcal{E}[X]+\mathcal{E}^{2}[X] \\
& =\mathcal{E}\left[X^{2}\right]-\mathcal{E}^{2}[X]
\end{aligned}
$$

Numerical disadvantage: loss of accuracy through cancellation

Equations for Expected Reward until Absorption

```
For s\not\inA:
    \mathcal{E}W.s}[R
= { conditioning on first state t after state s, using s\not\inA}
    \mathcal{E}
= { recurrence for walk reward: R.sv = r.s.t + R.v for v\inW.t }
    \mathcal{E}
= { linearity of expectation (r.s.t is independent of v)}
    \mathcal{E}
    = { simplify notation }
    \mathcal{E}
```

Linear equations with unknowns $\mu_{s}=\mathcal{E}_{W \cdot s}[R]$:

$$
\mu_{s}=\sum_{t \in \Omega} p . s . t *\left(r . s . t+\mu_{t}\right)
$$

C 2004, Tom Verhoeff
Reward Variance-7

A constant offset does not affect the variance:

$$
\mathcal{V}[c+X]=\mathcal{E}\left[(c+X-\mathcal{E}[c+X])^{2}\right]=\mathcal{E}\left[(X-\mathcal{E}[X])^{2}\right]=\mathcal{V}[X]
$$

Via second moment:

$$
\mathcal{V}[c+X]=\mathcal{E}\left[(c+X)^{2}\right]-(c+\mathcal{E}[X])^{2}
$$

Combine:

$$
\begin{equation*}
\mathcal{E}\left[(c+X)^{2}\right]=(c+\mathcal{E}[X])^{2}+\mathcal{V}[X] \tag{1}
\end{equation*}
$$

```
For \(s \notin A\), we calculate
    \(=\begin{array}{r}\mathcal{V}_{W . s}[R] \\ \{\text { definition of } \mathcal{V}\} \\ \\ \mathcal{E}_{W . s}\left[\left(R-\mathcal{E}_{W . s}[R]\right)^{2}\right]\end{array}\)
\(=\{\) conditioning on first state \(t\) after state \(s\), using \(s \notin A\}\)
    \(\mathcal{E}_{t \in \Omega}\left[\mathcal{E}_{v \in W . t}\left[\left(R . s v-\mathcal{E}_{W . s}[R]\right)^{2}\right]\right]\)
\(=\quad\{\) recurrence for reward: R.sv \(=\) r.s.t \(+R . v\) for \(v \in\) W.t \(\}\)
    \(\mathcal{E}_{t \in \Omega}\left[\mathcal{E}_{v \in W . t}\left[\left(\text { r.s.t }+ \text { R.v }-\mathcal{E}_{W . s}[R]\right)^{2}\right]\right]\)
\(=\left\{(1)\right.\), using that r.s.t \(-\mathcal{E}_{W . s}[R]\) does not depend on \(\left.v\right\}\)
    \(\mathcal{E}_{t \in \Omega}\left[\left(r . s . t+\mathcal{E}_{W . t}[R]-\mathcal{E}_{W . s}[R]\right)^{2}+\mathcal{V}_{W . t}[R]\right]\)
```


Variance in Walk Length for Spider

Variance in walk length $\sigma_{s}^{2}=\mathcal{V}_{W . s}[R]$ from face s to bottom:

$$
\begin{aligned}
\sigma_{\top}^{2}= & \left(1+\mu_{\mathrm{M}}-\mu_{\top}\right)^{2}+\sigma_{\mathrm{M}}^{2} \\
\sigma_{\mathrm{M}}^{2}= & 0.25\left(\left(1+\mu_{\top}-\mu_{\mathrm{M}}\right)^{2}+\sigma_{\top}^{2}\right)+ \\
& 0.5\left(\left(1+\mu_{\mathrm{M}}-\mu_{\mathrm{M}}\right)^{2}+\sigma_{\mathrm{M}}^{2}\right)+ \\
& 0.25\left(\left(1+\mu_{\mathrm{B}}-\mu_{\mathrm{M}}\right)^{2}+\sigma_{\mathrm{B}}^{2}\right) \\
\sigma_{\mathrm{B}}^{2}= & 0
\end{aligned}
$$

Solution:

$$
\begin{aligned}
& \sigma_{\top}^{2}=22 \\
& \sigma_{\top} \approx 4.69
\end{aligned}
$$

System of linear equations with unknowns $\sigma_{s}^{2}=\mathcal{V}_{W . s}[R]$ for $s \in \Omega$, involving $\mu_{s}=\mathcal{E}_{W . s}[R]$ as parameters:

$$
\sigma_{s}^{2}=\sum_{t \in \Omega} p . s . t *\left(\left(r . s . t+\mu_{t}-\mu_{s}\right)^{2}+\sigma_{t}^{2}\right)
$$

C 2004, Tom Verhoeff
Reward Variance-11

Conclusion

- Importance of the variance
- Simple direct formula to calculate variance in reward until absorption in Markov chain
- Numerically attractive
- Applied to score variance of optimal strategy for Yahtzee Acyclic Markov chain with $\approx 10^{9}$ states

