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Spider on Cube

A spider walks randomly on the faces of a cube:

What is the expected time for the spider to get off the cube?

What is the corresponding variance ?
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Markov Chain

Finite state machine with transition probabilities and rewards
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Expected Reward

Transition probabilities p.s.t and rewards r.s.t for states s, t ∈ Ω

Lift to walks w = s0 s1 . . . sn

Probability of walk w: P.w = p.s0.s1 ∗ · · · ∗ p.sn−1.sn

Reward of walk w: R.w = r.s0.s1 + · · · + r.sn−1.sn

Walks from s to absorption in A: W.s =
⊎

t∈Ω{ stv | tv ∈ W.t } (s $∈ A)

Expected reward from s to absorption in A:

EW.s[R] =
∑

w∈W.s

P.w ∗ R.w
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Expected Walk Length for Spider

Obtain equations by generalizing and conditioning .

Expected walk lengths µs = EW.s[R] from face s to bottom:

µT = 1 + µM
µM = 0.25

(
1 + µT

)
+ 0.5

(
1 + µM

)
+ 0.25

(
1 + µB

)
µB = 0

Solution:

µT = 6

µM = 5

µB = 0
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Conditioning on First Transition to A

For s $∈ A:

EW.s

[
X

]
= { definition of E }∑

w∈W.s P.w ∗ X.w

= { write w = sv for v ∈ W.t, because s $∈ A }∑
t∈Ω

∑
v∈W.t P.sv ∗ X.sv

= { recurrence for walk probability: P.sv = p.s.t ∗ P.v for v ∈ W.t }∑
t∈Ω

∑
v∈W.t p.s.t ∗ P.v ∗ X.sv

= { distribute p.s.t ∗ outside
∑

v (p.s.t does not depend on v) }∑
t∈Ω p.s.t ∗ ∑

v∈W.t P.v ∗ X.sv

= { definition of E }
Et∈Ω

[
Ev∈W.t

[
X.sv

] ]
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Equations for Expected Reward until Absorption

For s $∈ A:

EW.s[R]
= { conditioning on first state t after state s, using s $∈ A }

Et∈Ω
[
Ev∈W.t

[
R.sv

] ]
= { recurrence for walk reward: R.sv = r.s.t + R.v for v ∈ W.t }

Et∈Ω
[
Ev∈W.t

[
r.s.t + R.v

] ]
= { linearity of expectation (r.s.t is independent of v) }

Et∈Ω
[

r.s.t + Ev∈W.t[R.v]
]

= { simplify notation }
Et∈Ω [ r.s.t + EW.t[R] ]

Linear equations with unknowns µs = EW.s[R]:

µs =
∑
t∈Ω

p.s.t ∗
(
r.s.t + µt

)
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Variance

Definition:

V[X] = E
[
(X − E[X])2

]

Often computed via second moment:

V[X] = E
[
(X − E[X])2

]
= E

[
X2 − 2 X E[X] + E2[X]

]
= E

[
X2

]
− 2E[ X ]E[X] + E2[X]

= E
[
X2

]
− E2[X]

Numerical disadvantage: loss of accuracy through cancellation
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Basic Properties of Variance

A constant offset does not affect the variance:

V[c + X] = E
[
(c + X − E[c + X])2

]
= E

[
(X − E[X])2

]
= V[X]

Via second moment:

V[c + X] = E
[
(c + X)2

]
− (c + E[X])2

Combine:

E[(c + X)2] = (c + E[X])2 + V[X] (1)
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Reward Variance on Walks until Absorption

For s $∈ A, we calculate

VW.s[R]

= { definition of V }
EW.s

[
(R − EW.s[R])2

]
= { conditioning on first state t after state s, using s $∈ A }

Et∈Ω
[
Ev∈W.t

[ (
R.sv − EW.s[R]

)2
] ]

= { recurrence for reward: R.sv = r.s.t + R.v for v ∈ W.t }
Et∈Ω

[
Ev∈W.t

[ (
r.s.t + R.v − EW.s[R]

)2
] ]

= { (1), using that r.s.t − EW.s[R] does not depend on v }
Et∈Ω

[ (
r.s.t + EW.t[R] − EW.s[R]

)2
+ VW.t[R]

]
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Equations for Reward Variance

System of linear equations with unknowns σ2
s = VW.s[R] for s ∈ Ω,

involving µs = EW.s[R] as parameters:

σ2
s =

∑
t∈Ω

p.s.t ∗
((

r.s.t + µt − µs

)2
+ σ2

t

)
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Variance in Walk Length for Spider

Variance in walk length σ2
s = VW.s[R] from face s to bottom:

σ2
T =

(
1 + µM − µT

)2
+ σ2

M

σ2
M = 0.25

((
1 + µT − µM

)2
+ σ2

T

)
+

0.5
((

1 + µM − µM
)2

+ σ2
M

)
+

0.25
((

1 + µB − µM
)2

+ σ2
B

)
σ2
B = 0

Solution:

σ2
T = 22

σT ≈ 4.69
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Conclusion

• Importance of the variance

• Simple direct formula to calculate variance in

reward until absorption in Markov chain

• Numerically attractive

• Applied to score variance of optimal strategy for Yahtzee

Acyclic Markov chain with ≈ 109 states
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